

Profiling and Optimizing D-Bus APIs

Will Thompson
Collabora Ltd.

Profiling

“Silhouetted Wheel” by zzathras777

Why?

● Why does it take so long to sign in/join #ubuntu
with Empathy?

● Does some signal keep waking up lots of
processes?

● See how an API works out in practice
● Getting your head around a new framework

How?

● Slow D-Bus calls won’t show up in generic
profilers
● (you are making async calls, right?)

● Need to study several processes’ interaction
● Timing of messages on the bus is handy
● Let’s use a D-Bus-specific tool.

Statistics

● bustle-count summarizes number of calls to
methods and emissions of signals

● bustle-time shows total and average time spent
in each method

● bustle-dot plus GraphViz shows component
dependencies

Wishlist

● Equivalents of bustle-count and bustle-time in
the UI

● Searching and filtering
● Spacing events in proportion to time
● Showing the contents of messages

/getinvolved

● Get it:
● http://willthompson.co.uk/bustle/
● git://git.collabora.co.uk/git/user/wjt/bustle.git
● http://git.collabora.co.uk/?p=user/wjt/bustle.git

● “Bug tracker”:
● will.thompson@collabora.co.uk

Optimizing

“Espresso” by WordRidden

Reduce roundtrips

“M40 at Night” by timo_w2s

Standard access pattern

• Fetch initial state
• Subscribe to change notifications
• Do whatever you wanted to do

Standard access pattern

• Fetch initial state
• Subscribe to change notifications
• Do whatever you wanted to do

Use D-Bus properties, not
accessors

● Get(iface, "Foo") rather than GetFoo()
● GetAll(iface) rather than Get(), Get(), Get()

Telepathy’s Group interface

● Used for chatrooms, calls and contact list
groups

● Three conceptual lists of participants:
● Members
● LocalPendingMembers
● RemovePendingMembers

● Used to have lots of separate accessors
● Now just GetAll("…Channel.Interface.Group")

ConnMan’s properties

● Reinvents DBus.Properties once per interface
● GetProperties() → a{sv}
● SetProperty(s: name, v: value) → ()
● PropertyChanged(s: name, v: value)

Supply information up front

● FooAdded / NewFoo signals can contain a
snapshot of properties

● Lets UI react immediately without needing to
get properties first

NewChannel → NewChannels

● NewChannel contains:
● the contact/chatroom’s integer handle (not name!);
● whether it’s a call, text conversation, …

● NewChannels adds:
● the contact/chatroom’s name;
● whether you requested the channel;
● who invited you;

● … and more, as appropriate:
● the incoming file’s name, type, size, etc.;
● whether the call is (initially) audio/video/both;
● the application being shared over the tube;
● …

foreach

“16th July 2008” by gregoryjameswalsh

descriptions = [programme.Describe(talk)
 for talk in gcds_talks]

descriptions = programme.Describe(gcds_talks)

Fetching metadata from Tracker

● Get(s: service_type, s: uri, as: keys) → as:
metadata

“Adam’s Record Collection” by melancon

Fetching metadata from Tracker

● Get(s: service_type, s: uri, as: keys) → as:
metadata

● GetMultiple(s: service_type, as: uris, as: keys)
→ aas: metadatas

● In extreme cases (thousands of items — your
photo collection/mp3 library/mail archive?): 2.5×
faster.

Telepathy contacts’ metadata

● InspectHandles(…, au: handles) → as: identifiers

Telepathy contacts’ metadata

● GetAliases(au: contacts) → a{us}: aliases
● GetPresences(au) → a{u(uss))}: presences
● GetKnownAvatarTokens(au) → a{us}: tokens

Telepathy contacts’ metadata

● GetLocations
● GetContactCapabilities
● GetContactInfo
● …

Contacts interface

GetContactAttributes(

au: Handles,

as: Interfaces)
→ a{ua{sv}}: Attributes

Contacts interface

void
tp_connection_get_contacts_by_handle (
 TpConnection *self,
 const TpHandle handles[],
 const TpContactFeature features[],
 TpConnectionContactsByHandleCb callback);

typedef void
(*TpConnectionContactsByHandleCb) (
 TpConnection *connection,
 TpContact *contacts[]);

Integer IDs?!

“You don’t need to invent a new kind of integer
ID! That is what the object path is, it’s an id for
an object.”

— Havoc Pennington, Best D-Bus Practices

“Crowd” by saturnism

Don’t just wrap your C/Java/… API

Awesome

● /
● org.naquadah.awesome.awful.Remote¹

● ¹ formerly org.awesome.awful.Remote …

● Eval(s: lua) → ???
● Return type depends on what the Lua code

returns!

Reducing wakeups

“alarm-clock” by fauzan145

NameOwnerChanged

● Can wake you up on every name change,
even if you don't care about the name

● Match arg0=name.you.care.about
● Maybe patch the daemon to warn you about

unqualified matches?

Don't force information on clients

● Split information into conceptually self-
contained interfaces

● Lets clients only monitor properties they care
about

Client API

● Efficient D-Bus APIs can be inconvenient to use
● Good bindings help a lot

Tp::Proxy (and TpProxy)

● Create object; call_when_ready()
● Subsequent changes through normal Qt /

GObject signals

Features

● Specify what you care about at construct time.
● Upgrade: “I now care about avatars”

Property change notification

● No standard mechanism

 ⇒ no auto-generated bindings ☹

ConnMan

PropertyChanged(s: name, v: value)

Telepathy chatrooms

MembersChanged (
au: added,

au: removed,
au: local_pending,

 au: remote_pending)

Potential compromise

● PropertiesChanged(s: interface, a{sv}: values)
● IDL annotation for properties that use it.

Logging in with Empathy …

● Connecting
● Network bound.

● Getting all the avatars
● Free if they’re cached;
● Network-bound if not.

● Getting the entire contact list
● Hmm …

Contact list

● Separate objects for:
● subscribe: contacts we’re subscribed to
● publish: contacts subscribed to us
● deny: contacts we’ve blocked
● each named group

● Each one needs to become ready.

● Then, match up the members to existing Contact objects.

● Make any Contacts you don’t have (asynchronously).

● Sorry …

Slight improvement

● Separate objects for:
● subscribe: contacts we’re subscribed to
● publish: contacts subscribed to us
● deny: contacts we’ve blocked
● each named group
● stored: superset of all the above

But we should fix it properly

● Roster object
● Property mapping contact handles to their

state, with change notification
● Helper method to delegate to

GetContactAttributes:
● all contacts (for the contact list)
● just those in state x

● (or similar)

Thanks!

● http://willthompson.co.uk/bustle/
● http://telepathy.freedesktop.org/
● #telepathy on Freenode
● http://www.collabora.co.uk/

Yes, Bustle is written in Haskell!

(What of it?)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

