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Profiling

“Silhouetted Wheel” by zzathras777



  

Why?

● Why does it take so long to sign in/join #ubuntu 
with Empathy?

● Does some signal keep waking up lots of 
processes?

● See how an API works out in practice
● Getting your head around a new framework



  

How?

● Slow D-Bus calls won’t show up in generic 
profilers
● (you are making async calls, right?)

● Need to study several processes’ interaction
● Timing of messages on the bus is handy
● Let’s use a D-Bus-specific tool.



  



  

Statistics

● bustle-count summarizes number of calls to 
methods and emissions of signals

● bustle-time shows total and average time spent 
in each method

● bustle-dot plus GraphViz shows component 
dependencies



  

Wishlist

● Equivalents of bustle-count and bustle-time in 
the UI

● Searching and filtering
● Spacing events in proportion to time
● Showing the contents of messages



  

/getinvolved

● Get it:
● http://willthompson.co.uk/bustle/
● git://git.collabora.co.uk/git/user/wjt/bustle.git
● http://git.collabora.co.uk/?p=user/wjt/bustle.git

● “Bug tracker”:
● will.thompson@collabora.co.uk



  

Optimizing

“Espresso” by WordRidden



  

Reduce roundtrips

“M40 at Night” by timo_w2s



  

Standard access pattern

• Fetch initial state
• Subscribe to change notifications
• Do whatever you wanted to do
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Use D-Bus properties, not 
accessors

● Get(iface, "Foo") rather than GetFoo()
● GetAll(iface) rather than Get(), Get(), Get()



  

Telepathy’s Group interface

● Used for chatrooms, calls and contact list 
groups

● Three conceptual lists of participants:
● Members
● LocalPendingMembers
● RemovePendingMembers

● Used to have lots of separate accessors
● Now just GetAll("…Channel.Interface.Group")



  

ConnMan’s properties

● Reinvents DBus.Properties once per interface
● GetProperties() → a{sv}
● SetProperty( s: name, v: value ) → ()
● PropertyChanged( s: name, v: value )



  

Supply information up front

● FooAdded / NewFoo signals can contain a 
snapshot of properties

● Lets UI react immediately without needing to 
get properties first



  

NewChannel → NewChannels

● NewChannel contains:
● the contact/chatroom’s integer handle (not name!);
● whether it’s a call, text conversation, …

● NewChannels adds:
● the contact/chatroom’s name;
● whether you requested the channel;
● who invited you;

● … and more, as appropriate:
● the incoming file’s name, type, size, etc.;
● whether the call is (initially) audio/video/both;
● the application being shared over the tube;
● …



  



  

foreach

“16th July 2008” by gregoryjameswalsh



  

descriptions = [ programme.Describe(talk)
                  for talk in gcds_talks ]



  

descriptions = programme.Describe(gcds_talks)



  

Fetching metadata from Tracker

● Get( s: service_type, s: uri, as: keys ) → as: 
metadata



  

“Adam’s Record Collection” by melancon



  



  

Fetching metadata from Tracker

● Get( s: service_type, s: uri, as: keys ) → as: 
metadata

● GetMultiple( s: service_type, as: uris, as: keys ) 
→ aas: metadatas

● In extreme cases (thousands of items — your 
photo collection/mp3 library/mail archive?): 2.5× 
faster.



  

Telepathy contacts’ metadata

● InspectHandles( …, au: handles ) → as: identifiers

 

 

 

 

 

 

 



  

Telepathy contacts’ metadata

● GetAliases( au: contacts ) → a{us}: aliases
● GetPresences( au ) → a{u(uss))}: presences
● GetKnownAvatarTokens( au ) → a{us}: tokens

 

 

 

 



  

Telepathy contacts’ metadata

● GetLocations
● GetContactCapabilities
● GetContactInfo
● …



  

Contacts interface

GetContactAttributes(

au: Handles,

as: Interfaces )
→ a{ua{sv}}: Attributes



  

Contacts interface

void 
tp_connection_get_contacts_by_handle (
  TpConnection *self,
  const TpHandle handles[],
  const TpContactFeature features[],
  TpConnectionContactsByHandleCb callback);

typedef void
(*TpConnectionContactsByHandleCb) ( 
  TpConnection *connection,
  TpContact *contacts[]);



  

Integer IDs?!

“You don’t need to invent a new kind of integer 
ID! That is what the object path is, it’s an id for 
an object.”

— Havoc Pennington, Best D-Bus Practices



  

“Crowd” by saturnism



  

Don’t just wrap your C/Java/… API



  

Awesome

● /
● org.naquadah.awesome.awful.Remote¹

● ¹ formerly org.awesome.awful.Remote …

● Eval( s: lua ) → ???
● Return type depends on what the Lua code 

returns!



  

Reducing wakeups

“alarm-clock” by fauzan145



  

NameOwnerChanged

● Can wake you up on every name change,
even if you don't care about the name

● Match arg0=name.you.care.about
● Maybe patch the daemon to warn you about 

unqualified matches?



  

Don't force information on clients

● Split information into conceptually self-
contained interfaces

● Lets clients only monitor properties they care 
about



  

Client API

● Efficient D-Bus APIs can be inconvenient to use
● Good bindings help a lot



  

Tp::Proxy (and TpProxy)

● Create object; call_when_ready()
● Subsequent changes through normal Qt / 

GObject signals



  

Features

● Specify what you care about at construct time.
● Upgrade: “I now care about avatars”



  

Property change notification

● No standard mechanism

 ⇒ no auto-generated bindings ☹



  

ConnMan

PropertyChanged( s: name, v: value )



  

Telepathy chatrooms

MembersChanged (
au: added,

au: removed,
au: local_pending,

 au: remote_pending )



  

Potential compromise

● PropertiesChanged( s: interface, a{sv}: values )
● IDL annotation for properties that use it.



  

Logging in with Empathy …

● Connecting
● Network bound.

● Getting all the avatars
● Free if they’re cached;
● Network-bound if not.

● Getting the entire contact list
● Hmm …



  



  

Contact list

● Separate objects for:
● subscribe: contacts we’re subscribed to
● publish: contacts subscribed to us
● deny: contacts we’ve blocked
● each named group

● Each one needs to become ready.

● Then, match up the members to existing Contact objects.

● Make any Contacts you don’t have (asynchronously).

● Sorry …



  

Slight improvement

● Separate objects for:
● subscribe: contacts we’re subscribed to
● publish: contacts subscribed to us
● deny: contacts we’ve blocked
● each named group
● stored: superset of all the above



  

But we should fix it properly

● Roster object
● Property mapping contact handles to their 

state, with change notification
● Helper method to delegate to 

GetContactAttributes:
● all contacts (for the contact list)
● just those in state x

● (or similar)



  

Thanks!

● http://willthompson.co.uk/bustle/
● http://telepathy.freedesktop.org/
● #telepathy on Freenode
● http://www.collabora.co.uk/



  



  

Yes, Bustle is written in Haskell!

(What of it?)
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